Efficient and fast spline-backfitted kernel smoothing of additive models

نویسندگان

  • Jing Wang
  • Lijian Yang
چکیده

A great deal of effort has been devoted to the inference of additive model in the last decade. Among existing procedures, the kernel type are too costly to implement for high dimensions or large sample sizes, while the spline type provide no asymptotic distribution or uniform convergence. We propose a one step backfitting estimator of the component function in an additive regression model, using spline estimators in the first stage followed by kernel/local linear estimators. Under weak conditions, the proposed estimator’s pointwise distribution is asymptotically equivalent to an univariate kernel/local linear estimator, hence the dimension is effectively reduced to one at any point. This dimension reduction holds uniformly over an interval under assumptions of normal errors. Monte Carlo evidence supports the asymptotic results for dimensions ranging from low to very high, and sample sizes ranging from moderate to large. The proposed confidence band is applied to the Boston housing data for linearity diagnosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spline-backfitted kernel smoothing of partially linear additive model

A spline-backfitted kernel smoothing method is proposed for partially linear additive model. Under assumptions of stationarity and geometric mixing, the proposed function and parameter estimators are oracally efficient and fast to compute. Such superior properties are achieved by applying to the data spline smoothing and kernel smoothing consecutively. Simulation experiments with both moderate ...

متن کامل

Spline-backfitted Kernel Smoothing of Nonlinear Additive Autoregression Model

Application of nonand semiparametric regression techniques to high dimensional time series data have been hampered due to the lack of effective tools to address the “curse of dimensionality”. Under rather weak conditions, we propose spline-backfitted kernel estimators of the component functions for the nonlinear additive time series data that is both computationally expedient so it is usable fo...

متن کامل

Efficient and Fast Spline-backfitted Kernel Smoothing of Additive Regression Model∗

A great deal of efforts has been devoted to the inference of additive model in the last decade. Among the many existing procedures, the kernel type are too costly to implement for large number of variables or for large sample sizes, while the spline type provide no asymptotic distribution or any measure of uniform accuracy. We propose a synthetic estimator of the component function in an additi...

متن کامل

Spline-backfitted Kernel Smoothing of Additive Coefficient Model

Additive coefficient model (Xue and Yang 2006a, b) is a flexible tool for multivariate regression and time series analysis that circumvents the “curse of dimensionality.” We propose spline-backfitted kernel (SBK) and spline-backfitted local linear (SBLL) estimators for the component functions in the additive coefficient model that is both (i) computationally expedient so it is usable for analyz...

متن کامل

Nonparametric Decomposition of Time Series Data with Inputs

The backfitting algorithm commonly used in estimating additive models is used to decompose the component shares explained by a set of predictors on a dependent variable in the presence of linear dependencies (multicollinearity) among the predictors. Multicollinearity of independent variables affects the consistency and efficiency of ordinary least squares estimates of the parameters. We propose...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009